

INCONEL[®] alloy 718 (UNS N07718/W.Nr. 2.4668) is a high-strength, corrosion-resistant nickel chromium material used at -423° to 1300°F. Typical composition limits are shown in Table 1.

The age-hardenable alloy can be readily fabricated, even into complex parts. Its welding characteristics, especially its resistance to postweld cracking, are outstanding.

The ease and economy with which INCONEL alloy 718 can be fabricated, combined with good tensile, fatigue, creep, and rupture strength, have resulted in its use in a wide range of applications. Examples of these are components for liquid fueled rockets, rings, casings and various formed sheet metal parts for aircraft and land-based gas turbine engines, and cryogenic tankage. It is also used for fasteners and instrumentation parts.

PHYSICAL CONSTANTS AND THERMAL PROPERTIES

Some physical constants of INCONEL alloy 718 are shown in Table 2. Modulus data appear in Tables 3 and 4, and thermal properties in Table 5. The values in these tables will vary slightly, depending on the composition and condition of the specimen tested. They are typical but are not suitable for specification purposes.

Table 1 - Limiting Chemical Composition^a, %

Nickel (plus Cobalt)	
Chromium	
Iron	Balance*
Niobium (plus Tantalum)	
Molybdenum	
Titanium	
Aluminum	
Cobalt	1.00 max.
Carbon	0.08max.
Manganese	0.35 max.
Silicon	0.35 max.
Phosphorus	0.015 max.
Sulfur	
Boron	0.006 max.
Copper	0.30 max.

^aConforms to AMS specifications

*Reference to the 'balance' of a composition does not guarantee this is exclusively of the element mentioned but that it predominates and others are present only in minimal quantities.

Table 2 - Physical Constants

Density, Ib/in ³	
Annealed	0.296
Annealed and Aged	0.297
Melting Range, °F	
°C	
Specific Heat at 70°F, Btu/lb °F (at 21°C, J/kg	g °C)0.104 (435)
Curie Temperature, °F (°C)	
Annealed Material	<-320 (<-196)
Annealed and Aged Material	170 (-112)
Permeability at 200 oersted and 70°F	
Annealed Material	
Annealed and Aged Material	1.0011
1 1 1 1 7 1 1 1 1 1	

Table 3 - Modulus of Elasticity at Low Temperatures^a

	Temperature,	Modulus of Ela	and the from the from the from	
Publication Number SMC-045 Copyright © Special Metals Corporation, 2007 (Sept 07)	°F	Young's Modulus	Torsional M odulus	Poisson's Ratio
DICONTRACT AND A CONTRACT OF A	-308	31.3	12.5	0.25
INCONEL is a trademark of the Special Metals Corporation g	group of company	es. 30.6	11.8	0.30
The data contained in this publication is for informational purposes only and may be re-	vised at any time with 70	prior n 2920 The dat	a is believedto be ac	curate anQ.29
reliable, but Special Metals makes no representation or warranty of any kind (express or	mplied) and assumes no	liability yoth respect 1	o the acquragy or con	npleteneso 30
of the information contained herein. Although the data is believed to be representative vary from what is shown in this publication. Nothing contained in this publication should	be construed as guarant	eeing the product for a	particular use or ap	plication. 0.31
and	^a Cold-rolled sheet			
	400	28.5	10.9	0.31
	500	28.0	10.6	0.32

Temperature,	Modulus of Ela	asticity, ksi x 10³	Poisson's	Temperature,	Modulus of Ela	Poisson's			
* F	Young's M odulus	Torsional M odulus	Ratio ^b	°F	Young's Modulus	Torsional M odulus	R atio ^b		
70	29.0	11.2	0.294	1300	23.0	8.9	0.292		
100	28.8	11.2	0.291	1400	22.3	8.5	0.306		
200	28.4	11.0	0.288	1500	21.3	8.1	0.321		
300	28.0	ة 10.9 ⁽	0.280	1600	20.2	7.6	0.331		
400	27.6	10.8	0.280	1700	18.8	7.1	0.334		
500	27.1	10.6	0.275	1800	17.4	6.5	0.341		
600	26.7	10.5	0.272	1900	15.9	5.8	0.366		
700	26.2	^ل 10.3 ک	0.273	2000	14.3	^త 5.1 ^ల ు	0.402		
800	25.8	10.1	0.271	^a Hot-rolled flat heat-tr	reated 1800°F/1 hr. A	.C. + 1325°F/8 hr. F.	C. 20°F/hr to 11		
900	25.3	9.9	0.272	^a Hot-rolled flat heat-treated 1800°F/1 hr, A.C. + 1325°F/8 hr, F.C. 20°F/hr to 1150 held for total aging time of 18 hr. Dynamic testing involved frequencies of fro 813 to 571 cps in bending and from 3110 to 2097 cps in torsion.					
1000	24.8	9.7	0.271						
1100	24.2	9.5	0.276	^b Computed from (E	-2G)/2G, where E i	s Young's Modulus	and G is torsi		
1200	23.7	92	0.283	^b Computed from (E-2G)/2G, where E is Young's Modulus and G is torsigned					

Table 4 - Modulus of Elasticitya

Table 5 - Thermal Properties

Temperature, °F	Thermal Co BTU•in/		Electrical R ohm cire	M ean Linear E xpansion ^{ь,с} ,	
Str. Str. Str. Str. Str. T white white white white white	A nn. 1800°F/1 hr	Ann. + Aged	Ann. 1800°F/1 hr	Ann + Aged	in/in/°F x 10 ⁻⁶
-320	t at at at at				5.9 ^d
్ న్ న్ న్ న్70	an an 17 an ai	79	753	725 🔮 🖉	and States States - States States
200	86	87	762	733	7.31
400	98	100	772	755	7.53
600	111	112	775	768	7.74
800	s 123 s s	124	784	ి ు775 ో ు	J 7.97
1000	135	136	798	788	8.09
1200	147	148	805	794	8.39
1400	160	161	802	797	8.91
1600	173	173	799	796	State State - State State
1800	185	186	801	800	and Stateman States - Stateman States
2000	196	199	811	796	at when the call and

^aAnnealing was 1800°F/1 hr; aging was 1325°F/8 hr, F.C. 20°/hr to 1150°F, held at 1150°F for total aging time of 18 hr. Conductivity calculated from resistivity values. ^bFrom 70°F to temperature shown.

°Annealed 1750°F/1 hr and aged 1325°F/8 hr, F.C. to 1150°F/8 hr, A.C.

dSamples tested were in both the annealed (1750°F/1 hr, A.C.) and annealed and aged (1750°F/1 hr + 1325°F/8 hr, F.C. to 1150°F, held at 1150°F for 10 hr, A.C.) conditions.

HEAT TREATING AND MECHANICAL PROPERTIES

For most applications, INCONEL alloy 718 is specified as: solution annealed and precipitation hardened (precipitation hardening, age hardening, and precipitation heat treatment are synonymous terms). Alloy 718 is hardened by the precipitation of secondary phases (e.g. gamma prime and gamma double-prime) into the metal matrix. The precipitation of these nickel-(aluminum, titanium, niobium) phases is induced by heat treating in the temperature range of 1100 to 1500°F. For this metallurgical reaction to properly take place, the aging constituents (aluminum, titanium, niobium) must be in solution (dissolved in the matrix); if they are precipitated as some other phase or are combined in some other form, they will not precipitate correctly and the full strength of the alloy with not be realized. To perform this function, the material must first be solution heat treated (solution annealed is a synonymous term).

Two heat treatments are generally utilized for INCONEL alloy 718:

•Solution anneal at 1700-1850°F followed by rapid cooling, usually in water, plus precipitation hardening at 1325°F for 8 hours, furnace cool to 1150°F, hold at 1150°F for a total aging time of 18 hours, followed by air cooling.

•Solution anneal at 1900-1950°F followed by rapid cooling, usually in water, plus precipitation hardening at 1400°F for 10 hours, furnace cool to 1200°F, hold at 1200°F for a total aging time of 20 hours, followed by air cooling.

If the material is to be machined, formed, or welded, it typically is purchased in the mill annealed or stress relieved condition. The material is then fabricated in its most malleable condition. After fabrication, it can be heat treated as required per the applicable specification.

1700°-1850°F Anneal and Age

The 1700°-1850°F anneal with its corresponding aging treatment as shown earlier is the optimum heat treatment for alloy 718 where a combination of rupture life, notch rupture life and rupture ductility is of greatest concern. The highest room-temperature tensile and yield strengths are also associated with this treatment. In addition, because of the fine grain developed, it produces the highest fatigue strength.

Material in this condition will meet the following minimum requirements:

Property	Room Temperature	/ 1200°F
Tensile Strength, ksi	180	140ª
	advance advance advance advance	145 ^b
Yield Strength (0.2%	150	115ª
Offset), ksi	Start Start Start Start	120 ^b
Elongation in 2 In.,%	ر کړ 12 کې کې	5 5 5
Hardness	Rc 36 or equivalent	
Stress Rupture		
Stress, ksi	States States States States States	.95ª
	The former and the second statement	100 ^b
Life, hr Elongation,	Stand and Stand Stand	23
° % ° 5 ° 5 ° 5	at at at at	4

AMS 5596 Sheet, Strip, & Plate

^aUp to 0.025-in. thickness, inclusive. ^bOver 0.025-in. thickness. ^cLongitudinal.

^dLong transverse for forgings.

^eTransverse for bars.

^fApplies up to 5-in.-diam. or thickness, inclusive. ^gProperties apply only to O.D. of 0.125-in. and over with wall thickness of 0.015-in. and over.

1900°-1950° Anneal and Age

The 1900°-1950° anneal with its corresponding aging treatment as shown above is the treatment preferred in tensile-limited applications because it produces the best transverse ductility in heavy sections, impact strength, and low-temperature notch tensile strength. However, this treatment has a tendency to produce notch brittleness in stress rupture.

After precipitation hardening as shown, material will meet the following requirements:

Property	Room Temperature	1200°F
Tensile Strength, ksi	185°	145°
and and and and and a	180 ^d	140 ^d
a Star Star Star Star Star	180°	140°
Yield Strength (0.2% Offset), ksi	150	125
Elongation in 2 In.,%	12°	12°
Star Star Star Star Star and start start start	10 ^d	° 10 ^d °
and Shares Shares Shares Shares Shares 3h	6e 5 5	6 ^e /
Reduction of Area, %	15°	15°
	12 ^d	12 ^d
	8e	8e
Hardness	331 BHN or equivalent	da ^{n dan d} ar ^{an d} ar dan da
Stress Rupture		Start Start Start Start
Stress, ksi Life, hr		100
Elongation, %	State State State State State	23 ి
	and statement statement - statement statement state	4 ^f

AMS 5589 Seamless Tubing

Property •	Room Temperature	1300°F
Tensile Strength, ksi	185	Andrew Andrew - Andrew Andrew Andre
Yield Strength (0.2% Offset), ksi	3 150 Start 30	and Statement Statement Statement Statement
Elongation in 2 In.,%	్ 12 క్ కి	Steel Steel Steel Steel
Hardness	Rc 36 or equivalent	State State State State State State
Stress Rupture Stress, ksi Life, hr Elongation, %		72.5 23
	and a strand strand - strand strand strand	5

P roperty ^a	AMS 5664 Bars, Forgings,& Rings	AMS 5597 Sheet, Strip, & Plate	AMS5590 S eamless Tubing ^d
Tensile Strength, ksi	180	180	170
Yield Strength (0.2% Offset), ksi	150	150	145
Elongation, %	10 ^b	15	15
	12°	and call call call	Constant contract of
Deduction of Arrow 0/	12 ^b	Stal Stal Stal	Stel _ Stel _ Stel _ Stel
Reduction of Area, %		of the start of th	Steller Steller Steller Stell
Hardness	341 BHN or equivalent	Rc 38 or equivalent	Sectored Sectored Sectored Sectored

^aTransverse direction.

^bBars.

^cForgings and flash-welded rings.

^dProperties apply only to O.D. of 0.125-in. and over with wall thickness of 0.015-in. and over.

Other Heat Treatments

Special Metals produces INCONEL alloy 718 for use in oil field applications. This material is produced under the NACE specification MR0175 which requires the solution annealed and aged material to meet a maximum hardness value of 40 Rockwell "C". Such material is typically solution heat treated at 1850-1900 °F and aged at 1450°F for six to eight hours and air cooled. Table 6 shows the mechanical properties this material will meet. Numerous proprietary heat treatments are used for INCONEL alloy 718 depending on the properties required. Such heat treatment sequences are usually developed by companies or agencies independent of the material supplier; consequently, discussion of procedures, tolerances, and resulting properties should be with that company or agency.

All the data shown in the following sections are typical but not to be used for specification purposes.

Condition	Diameter, in.(mm)	Tensile Strength, ksi (Kg/cm²) m in.		d Strength (0.2% set), ksi (Kg/cm ²) Elongation in 2 in. (50.8 mm) or 4D% Reduction of Area, % minimum		Hardness, Rockwell C			
Star Star Star :	Ser Star Star S	and the star star	minimum	maximum	minimum	minimum	m in. aver.	minimum	maximum
Cold worked, solution annealed & aged	0.5 (12.7) to 3 (76.2), inclusive	150 (10,545)	120 (8436)	140 (9842)	20	25	40 (5.55)	30	40
Hot worked, solution annealed & aged	0.5 (12.7) to 8 (203.2), inclusive	150 (10,545)	120 (8436)	140 (9842)	20	25	40 (5.55)	30	40
Hot worked, solution annealed & aged	8 (203.2) to 10 (254), inclusive	150 (10,545)	120 (8436)	140 (9842)	20	25	40 (5.55)	30	40

Table 6 - Mechanical Properties Aged Material for Oil Tool Applications Room Temperature Tensile and Hardness, and Room Temperature and -75°F Impact

ROOM TEMPERATURE TENSILE PROPERTIES

The following data are representative of the effects of the above annealing and aging treatments on room-temperature properties of a variety of products. More properties are shown under the section, High- and Low-Temperature Tensile Properties, Fatigue Strength, and Weld Properties.

Hot-Finished Products

Table 7 shows properties of hot-rolled round annealed at 1750° or 1950°F. The effects of annealing at 1750° or 1950°F and the associated aging treatments on bar of a range of diameters are given in Table 8. Properties produced by the two different annealing and aging schedules in hot-rolled round are compared in Table 9.

The effect of direct aging (1325°F/time at temperature, 8 hours, F.C. to 1150°F, hold at 1150°F for total aging time of 18 hours) on various sizes of samples is given in Table 10.

Properties of a pancake forging with samples taken from various locations, annealed at 1700°F and aged, are shown in Table 11. Properties of forged products given the 1950°F anneal and aged are shown in Tables 12 and 13. The effects of the two annealing and aging treatments on a forged pancake are compared in Table 14.

Diameterª, in.	Annealing T emperature ^b , °F	Test Orientation ^c	Tensile Strength, k si	Yield Strength (0.2% Offset), ksi	Elongation, %	Reduction of Area, %	Hardness
2.5	1750	ener statement to state state	135.5	77.5	45	49	where where - where
		T	129.5	73.5	32	29	1 1 -
	1950	Star Star Start	114.0	50.4	62	65	M GM _ GM
	aller and aller and aller and aller	and share and the share share	112.0	49.8		49	helinen - Helinen -
4	1750	all all all all all	117.5	55.0	53	52	90 Rb
	310 310 310 310 31 31	್ರೆ ತ ^{ರ್ಗ} ್ರ ತ ^{ರ್ಗ} ್ರ ತ ^{ರ್ಗ} ್ರ ತ ^{ರ್ಗ} ್ರ	119.0	56.5	50	46	88 Rb
	1950	The states state states states	112.5	48.0	60	63	87 Rb
	And And And	and shall state and	114.0	50.0	61	55	84 Rb
4	1750	ŢĨŢĨĻĨŢĨŢ	125.5	71.5	45	49	97 Rb
	States States States States St	in start start start	123.5	67.0	46	43	93 Rb
	1950	and some soft stand some	115.0	47.0	59	65	85 Rb
		Ţ	99.5	47.5	32	31	84 Rb
× 4 ×	് ് 1750	Ster Ster Ster Ster	126.0	71.5	45	ళ 47 ళ	96 Rb
	allaford allaford allaford distances	and the second second second second	114.0	60.0	26	25	90 Rb
	1950		114.5	53.0	58	61	87 Rb
	ate ate ate a	Star Star Star	105.0	47.0	34	29	83 Rb
4	1750	and share share a share	122.0	63.0	51	51	92 Rb
	Training Training Training Training	and share she was she	109.0	56.5	32	31	89 Rb
	1950	, or , or , or , or ,	112.5	50.0	62	62	86 Rb
	Starting Starting Starting Starting	and States States Constant	106.5	49.5	38	33	84 Rb
4	1750	and and and and and	119.0	56.5	51	54	91 Rb
		T T	114.5	54.0	45	38	85 Rb
	్ ో 1950	or other other other	110.5	47.0	60	62 🗸 🗸	86 Rb
	and the state of t	and some set and some	108.5	45.5	58	53	83 Rb
4	1750	T	111.0	54.5	41	35	and and - and
	1950	or or T	99.0	46.0	36	36	of _ord

Table 7 - Room-Temperature Tensile Properties of Annealed Hot-Rolled Round

^aEight separate heats represented.

^bAnnealing for 1 hr, A.C. ^cL is longitudinal test orientation; T, transverse.

Diameter ^a , in.	Heat Treatment ^b	Tensile Strength, k si	Yield Strength (0.2% Offset), ksi	Elongation, %	Reduction of Area, %	Hardness
0.625	As-Rolled	140.0	85.7	<u> </u>	58	23 Rc
	1750°F/1 hr	140.0	83.0	45	49	99 Rb
	1950°F/1 hr	117.5	48.5	58	64	85 Rb
	1750°F/1 hr, Age	ت 208.0 ک	້ 🗸 🎸 180.0	່ 21 🧳 🕹	J J J 39	46 Rc
	1950°F/1 hr, Age	194.0	157.0	23	34	45 Rc
0.625	As-Rolled	139.0	78.5	46	62	98 Rb
	1750°F/1 hr	138.0	75.5	54 🗸 🗸	49	97 Rb
	1950°F/1 hr	115.5	48.0	64	67	85 Rb
	1750°F/1 hr, Age	208.5	179.5	20	39	45 Rc
	1950°F/1 hr, Age	194.5	158.0	20	26	44 Rc
1.0	As-Rolled	130.0	65.0	54	67	95 Rb
	1750°F/1 hr	129.0	64.5	55	61	94 Rb
	1950°F/1 hr	112.5	52.0	64	68	87 Rb
	1750°F/1 hr, Age	201.5	175.0	20	36	46 Rc
	1950°F/1 hr, Age	188.0	152.0	21	34	45 Rc
1.5	As-Rolled	147.0	105.5	40	52	32 Rc
	1750°F/1 hr	/ 141.5	72.5	46	َ کَ کَ کَ کَ کَ 45	97 Rb
	1950°F/1 hr	120.0	55.0	58	60	89 Rb
	1750°F/1 hr, Age	205.0	167.5	20	28	46 Rc
	1950°F/1 hr, Age	໌ 191.0 ໌ ໌	153.0	24	36	43 Rc
4.0	1750°F/1 hr	117.5	55.0	53	52	90 Rb
	1950°F/1 hr	112.5	48.0	60	63	87 Rb
	1750°F/1 hr, Age	192.0	165.0	17	24	46 Rc
	1950°F/1 hr, Age	195.5	165.0	21	34	43 Rc

Table 8 - Room-Temperature Tensile Properties of Hot-Rolled Bar

^aFive separate heats represented. All tests are longitudinal.

^bWhen annealing is at 1750°F, aging is 1325°F/8 hr, F.C. to 1150°F for total aging time of 18 hr. When annealing is at 1950°F, aging is 1400°F/10 hr, F.C. to 1200°F for total aging time of 20 hr.

Table 9 - Tensile Properties of Hot-Rolled Round (4-in. Diameter)

Test Temper °F	ature,	Test Orientation	Tensile Strength, k si	Yield Strength (0.2% Offset), ksi	Elongation, %	Reduction of Area, %	Hardness, Rc
define define define	Heat T	reatment: 1750°F/1	hr, A.C. + 1325°F/8	hr, F.C. to 1150°F, H	lold at 1150°F for To	tal Aging Time of 18 I	nr ^a de de de de
	Room	Longitudinal	199.5	178.0	15.0	24.0	44
	Room	Transverse	198.5	173.5	12.0	16.0	40
	1200	Longitudinal	167.0	152.5	13.0	24.0	alter States States States States
	Heat Tr	reatment: 1950°F/1	hr, A.C. + 1400°F/10) hr, F.C. to 1200°F,	Hold at 1200°F for To	otal Aging Time of 20	hr and an an
	Room	Longitudinal	197.0	164.0	17.0	23.0	44
	Room	Transverse	192.0	165.0	19.0	24.0	44

^aIn stress-rupture tests under conditions of 1300°F and 75 ksi, results were: 68.2 hr life, 10.0% elongation and 13.0% reduction of area.

Table 10 - Room-Temperature Tensile Properties of Material Hot-Rolled and Aged (1	325°F/8
hr, F.C. to 1150°F, Hold at 1150°F for Total Aging Time of 18 hr)	

Sample	Tensile Strength, ksi	Yield Strength (0.2% Offset), ksi	Elongation, %	Reduction of Area, %	Hardness, Rc
0.65625-in. Diam.	206.5	189.5	19.0	34.5	42
0.625-inDiam.	206.5	ِ 179.5 [ِ]	22.0	45.5	ຼິິ <mark>4</mark> 1 ິ
0.625-inDiam.	210.0	184.0	22.0	44.5	42
13/16-inDiam.	209.0	181.0	22.0	43.0	43
1.25- x 1.25-in. Flat	227.5	210.0	17.0	40.8	44
1.5- x 175-in. Flat	215.0	172.0	19.0	35.0	42
0.625- x 1-in. Flat	215.5	184.0	24.0	45.5	44

Table 11 - Room-Temperature Tensile Properties of Pancake Forging (1700°F/1 hr plus 1325°F/8 hr, F.C. to 1150°F,Hold at 1150° for Total Aging Time of 18 hr)ª

Sample	Tensile Strength, ksi	Yield Strength (0.2% Offset), ksi	Elongation in 2 Inches, %	Reduction of Area, %	Charpy Keyhole Impact Strength, ft•lb
Radial center, top edge	182.0	159.0	10.0	10.5	-
Radial center, center	196.0	160.0	24.0	33.0	-
Radial center, bottom edge	186.5	159.5	16.0	19.0	-
Tangential, top edge	209.0	181.0	19.0	27.5	17-21
Tangential, bottom edge	210.0	179.0	18.0	29.5	21

^aPiece 6.75-in. long by 4.5-in. octagon, heated at 2050°F, upset to 4.5-in. thick; heated at 1800°F, upset to 2.25-in. thick by 8-in. diameter pancake.

Table 12 - Room-Temperature	Tensile Properties of I	Forged Flats (1 x 2-in	. Thick, Annealed	1950°F/1 hr, A.C. and Aged) ^a

Sample	Tensile Strength, ksi	Yield Strength (0.2% Offset), ksi	Elongation, %	Reduction of Area, %	Hardness, Rc
Longitudinal	191.5	159.0	20	32	40
Transverse	187.0	153.0	13	16	40
Longitudinal	191.1	160.0	19	29	42
Transverse	185.5	152.0	14	14	42
Longitudinal	194.0	162.0	17	26	43
Transverse	192.5	160.0	17	25	43
Longitudinal	195.0	165.0	18	23	43
Transverse	195.0	163.0	16	18	43
Longitudinal	193.0	164.0	17	22	42
Transverse	191.5	159.0	16	23	42
Longitudinal	193.5	166.0	15	21	42
Transverse	190.0	158.5	14	22	42
Longitudinal	199.5	171.0	17	26	44
Transverse	200.0	167.5	19	28	44
Longitudinal	195.0	165.0	18	26	42
Transverse	195.0	160.0	20	28	42
Longitudinal	198.0	170.0	20	33	43
Transverse	192.5	163.0	15	29	43
Longitudinal	198.0	174.0	21	34	43
Transverse	196.5	170.0	18	25	43
Longitudinal	200.0	170.0	17	24	43
Transverse	193.0	158.0	17	30	43
Longitudinal	189.0	157.5	21	35	42
Transverse	189.0	157.0	18	27	42

a1400°F/10 hr, F.C. to 1200°F, hold at 1200°F for total aging time of 20 hours.

Table 13 - Room-Temperature Tensile Properties of 1-in. Thick Pancake^a

Sample	Tensile Strength, ksi	Yield Strength (0.2% Offset), ksi	Elongation, %	Reduction of Area, %	Hardness, Rc
Radial	186.0	153.0	20	31	43
Tangential	186.5	154.0	18	29	43
Radial	195.0	151.0	20	33	43
Tangential	184.5	152.5	20	29	43
Radial	189.0	155.0	15	24	44
Tangential	185.0	154.0	19	23	44
Radial	188.0	153.0	20	31	43
Tangential	185.0	152.5	18	28	43

^aUpset-forged 3 to 1 reduction from a 4.0-in. diameter round. Forging temperature, 2000°F. Heat treatment: 1950°F/1-2 hr, plus 1400°F/10 hr, F.C. to 1200°F. Hold at 1200°F for a total aging time of 20 hr. Samples are from 4 separate heats.

Heat Treatment	Test Temperature, °F	Tensile Strength, k si	Yield Strength (0.2% Offset), ksi	Elongation, %	Reduction of A rea, %	Hardness, Rc
1800°F/1 hr, W.Q. + 1325°F/8 hr,	Room	204.5	176.0	16.0	23.0	38
F.C. to 1150°F, hold at 1150 °F for	Room	201.0	168.0	21.0	28.3	41
total aging time of 18 hr	1200	163.0	145.5	26.0	47.4	Start Start - Start Start
1950°F/1 hr, W.Q. + 1400°F/10 hr, F.C. to 1200°F, hold at 1200°F for total aging time of 20 hr	Room	190.0	152.0	18.0	24.3	35

Table 14 - Tensile Properties of Pancake Forging^a

^aPieces 4-in. diameter by 2-in. length heated at 1900°F and upset-forged to 5.5-in.-diameter by 1-in.-thickness pancake. Tests are transverse center-tomidsection.

Cold-Finished Products

Properties of cold-rolled sheet aged at 1325°F/8 hr, F.C. to 1150°F, hold at 1150°F for total aging time of 18 hours are shown in Table 15. Table 16 gives the effect of the heat treatment specified by AMS 5597 on material of various thickness. Some properties of tubing are given in Table 17.

Thickness, in.	Cold Reduction, %	Condition ^a	Tensile Strength, ksi	Yield Strength (0.2% Offset), ksi	Elongation in 2 In., %
0.025	27	As Cold-Rolled	155.0	130.0	14
	a strand strand strand	Cold-Rolled, Aged	209.0	190.0	10
	a di anti anti anti anti anti	As Cold-Rolled	154.0	128.0	15
	a feature steart steart steart st	Cold-Rolled, Aged	223.5	209.5	ە 10 % ئە
	And the state of t	As Cold-Rolled	154.0	132.0	14
	a stand stand stand stand	Cold-Rolled, Aged	211.5	194.0	1
		As Cold-Rolled	156.0	132.0	14
	and and all all all all all	Cold-Rolled, Aged	216.0 🧹 🧹	195.0	ຢັ່ງຢັ່ງຢັ່ງ13 ຊີ້ງຊ
0.050	21	As Cold-Rolled	138.0	112.0	22
		Cold-Rolled, Aged	208.0	189.0	and some some 9 and some
		As Cold Rolled	143.5	117.5	19
		Cold-Rolled, Aged	212.5	196.0	³⁷ 3 ⁷ 10 3 ⁷
0.093	18	As Cold-Rolled	140.5	115.0	26
	a salar salar salar salar	Cold-Rolled, Aged	210.0	188.5	16
0.125	26	As Cold-Rolled	158.5	137.0	11
		Cold-Rolled, Aged	219.0	206.5	³ 3 3 8 3 9
0.125	23	As Cold-Rolled	140.5	120.0	21 /
	a series and series and series and	Cold-Rolled, Aged	204.0	186.5	12
0.074	18.5	As Cold-Rolled	145.0	116.5	25
0.062	28	As Cold-Rolled	159.5	134.0	11

Table 15 - Room-Temperature Tensile Properties of Cold-Rolled Sheet

^aAging--1325°F/8 hr, F.C. to 1150°F, hold at 1150°F for total aging time of 18 hours.

Thickness, in	Tensile Strength, ksi	Yield Strength, k si	Elongation, %
0.010	192.5	172.5	17
0.012	204.0	169.5	19
0.015	198.0	162.0	19
0.016	196.0	163.5	19
0.018	196.5	155.5	21
0.021	202.5	169.0	20
0.025	199.0	162.5	20
0.031	197.0	160.0	21
0.040	208.0	172.0	16
0.047	199.0	166.5	20
0.050	211.0	177.0	16
0.062	203.5	171.0	18
0.078	192.0	158.5	17
0.080	200.0	163.5	20
0.093	199.0	167.0	19
0.100	208.0	176.0	18
0.109	204.0	171.0	19
0.125	203.5	172.0	16
0.156	196.5	161.0	21
0.187	207.5	182.0	18
0.210	194.5	160.0	22
0.250	205.0	170.5	19

Table 16 - Room-Temperature tensile properties of Sheet Annealed and Aged in Accordance with AMS 5597

 Table 17 - Effect of Aging on Room-Temperature Properties of Tube Reduced 70% to 0.133-in. Wall, 1.513-in. O.D.

 Violation

Yield Tensile Elongation, **S**trength Hardness. Condition Strength, (0.2%) % **R**c ksi Offset), ksi As-Tube Reduced 211.0 6.0 42.0 247.0 Aged 1325°F/8hr, F.C. 100°F/hr to 1150°F/ 266.0 261.0 4.0 51.5 8 hr, A.C.

HIGH- AND LOW-TEMPERATURE PROPERTIES

Hot Finished Products

Properties of hot-rolled bar annealed at 1800°F and aged are shown in Figure 1. Table 18 shows room-temperature properties of hot-rolled plate annealed and aged per AMS 5596H. Properties of hot-rolled round annealed at 1950°F and aged are in Table 19. Data on hot-rolled round (annealed at 1800°F and aged) for the range of -320°F to 1300°F are given in Table 20.

Table 21 compares low-temperature properties (short transverse tests) of specimens machined from a forging and given the 1800°F anneal and age with those given the 1950°F anneal and age.

Table 22 shows room and 1200°F and 1300°F properties of a variety of hot-finished products annealed at 1800°F and aged.

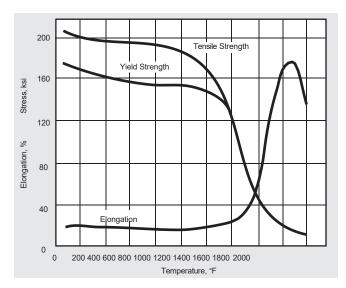


Figure 1. High-temperature properties of $\frac{1}{2}$ -in. diameter hot-rolled, annealed (1800°F/1 hr) and aged (1325°F/8 hr, F.C. to 1150°F, hold at 1150°F for total aging time of 18 hours) bar.

Thickness, In.ª	Tensile Strength, ksi	Yield Strength, ksi	Elongation, %	Hardness, Rc
0.5	206	177	18	43
0.75	204	170	19	42
· · · · · · · · · · · · · · · · · · ·	204	173	17	42

Table 18 - Room-Temperature Tensile Properties of Hot-Rolled Plate Annealed and Aged in Accordance with AMS 5596H

^aValues for each thickness are average of six samples, different heats.

Table 19 - High-Temperature Tensile Properties of Hot-Rolled Round, Annealed and Aged (1950°F/1 hr, plus 1400°F/10 hr, F.C. 100°F/hr to 1200°F, hold at 1200°F for 8 hr)^a

Test Temperature, °F	Tensile Strength, ksi	Yield Strength (0.2% O ffset), ksi	Elongation, %	Reduction of Area, %
Room	198.0	163.0	21	30
of 600 of of a	s 183.5 s s	المراجعة ا	16 3	S S 34 S S
1000	173.0	148.0	16	30
1200	160.0	140.0	15	25
1300	146.0	135.0	8 / / /	10
1400	123.5	116.0	of 31 5 of 5	0 ¹⁰ 0 ¹⁰ 0 ¹⁰
1500	105.0	100.0	15	20

^aRound, 4-in.diameter, from single heat.

Table 20 - Effect of Temperature on Tensile Properties of Hot-Rolled Round (5/8-in. Diameter, Annealed 1800°F/1 hr and Aged)^a

Temperature, °F	Tensile Strength, ksi	Yield Strength, ksi	Elongation, %	Reduction of Area, %
-320	237.0	173.5	26.0	27.0
-60 %	201.5	158.0	23.0	33.5
80	190.5	153.5	22.0	32.5
1200	164.5	145.0	28.0	59.2
1300	145.5	133.0	22.0	34.0

^a1325°F/8 hr, F.C. to 1150°F, hold at 1150°F for total aging time of 18 hr.

Table 21 - Low-Temperature Properties of Forging (Short Transverse Tests)^a

Test Temperature, °F	Tensile Strength, ksi	Yield Strength (0.2%Offset), ksi	Elongation in 4D, %	Reduction of Area, %	Notch Strength, Tensile Strength Ratio ^b
180	0°F/45 min, A.C. plus 13	25°F/8 hr, F.C. to 1150	°F, Hold at 1150°F for T	otal Aging Time of 18 hr	satural satural satural satural s
Room	187.0	165.9	17.0	23.0	1.45
-110	198.9	174.4	17.2	20.0	1.37
-320	229.0	186.8	14.0 کې کې کې	14.0	1.30
-423	237.2	194.9	13.5		1.30
1950	0°F/45 min, A.C. plus 140	00°F/10 hr, F.C. to 1200	°F, Hold at 1200°F for	Total Aging Time of 20 hr	
Room	181.5	147.7	19.0	24.5	1.37
-110 ک ^ر کر 110	J J J J J J J J J J J J J J J J J J J	້ 158.1 🧹 🦿	້ 🧭 🧭 🍼 15.0	ో లో లో లో 18.5	of 1.41 of a
-320	228.7	176.7	17.5	19.5	1.28
-423	244.2	186.8	16.5	18.0	1.19

 a Specimens machined from forging with dimensions 4 by 9 by 15-in. b Notch concentration factor K_t, 6.3.

Form	Temperature, °F	Tensile Strength, k si	Yield Strength (0.2% Offset), ksi	Elongation, %	Reduction of Area, %	Hardness, Rc
Forged Pancake ^a	and alternation and and alternation and and	and south and south and south and south and	All and and a second and and a second	Allen and allen allen allen all	and a strand strand and and a strand	instant section sections and restrict
Radial Center	Room	196.0	160.0	24	33	
Tang. Mid.Rad.	1200	162.0	138.5	23	38	Stat Stat_ Stat
atran Station Station Station	1300	146.0	135.0	30	62	States States
Hot Rolled,	Room	201.0	171.0	26	50	41
0.625-inDiam.	1200	164.5	145.0	28	59	
of Shall Shall Shall Shall Sh	1300	145.5	133.0	22	34	Stell Stell_ Stell
Forged Rod,	Room	184.5	152.0	28	42	ing Station Station Station
6-inDiam.	1300	129.0	113.0	14	16	Tourn and the set of the set of the set of the set
Hot-Rolled,	Room	211.0	174.0	23	40	and and and and and
0.5-inDiam.	1200	168.0	148.8	22	32	and and and
alter Station Station Station St	1300	.145.0	136.5	20	27	The Charles Charles Charles
Hot-Rolled,	Room	207.5	172.0	25	44	40
0.5-inDiam.	1200	163.5	145.0	26	49	and and and and
and Start Start Start St	1300	137.0	126.0	25	25	Star Star Star
Forged Square,	Room	180.0	152.0	23	3 3 3 40 X	Inter State - State
1- x 1-in.	1200	159.0	138.0	20	28	Sand Statement State
and and and a set	1300	140.0	129.0	26	44	and and and a
Forged Flat,	Room	184.5	154.0	24	42	44
1- x 2-in.	1200	150.0	132.5	21	38	States States - States
States States and States and States of	1300	140.0	125.5	17	22	rand statement statement statement
Hot-Rolled,	Room	190.0	152.0	22	37	42
2-inDiam.	1200	153.0	130.0	30	46	
atter state state state	1300	131.5	117.0	23 🗸 🗸	34	in states states
Forged Round,	Room	187.0	155.0	20	37	42
6-inDiam.	1200	156.0	134.0	18	24	and start start
	1300	136.5	123.0	12	13	0° 0° 0°
Forged Flat,	Room	204.0	162.5	18 0	33	44
0.625- x 0.75-in.	1200	165.5	147.0	26	61	Tear States and States States
traffit traffit traffit	1300	138.0	126.0	32	68	and and and and

Table 22 - High-Temperature Tensile Properties of Annealed and Aged Hot-Finished Material (1800°F/1 hr, plus 1325°F/8 hr, F.C. to 1150°F, Hold at 1150°F for Total Aging Time of 18 hours)

^a6.75-in. long by 4.5-in octagonal heated at 2050°F, upset-forged to 4.5-in. thick; reheated at 1800°F, upset-forged to 2.25-in. thick pancake.

Cold-Finished Products

High-temperature tensile properties of cold-rolled sheet annealed in accordance with AMS 5596 are shown in Table 23. More data on 5596-processed material appear in Table 24.

Table 25 shows room-temperature tensile properties of sheet annealed and aged per AMS 5596. Low-temperature properties of sheet processed in accordance with AMS 5596 are shown in Table 26. These data indicate the effects of sheet thickness as well as annealing and aging treatment. Large increases in strength are achieved by cold working and aging. Additional data on notch tensile strength are shown in Figure 2.

Table 27 compares data on annealed and aged sheet with direct-aged sheet over a temperature range from -110° to 1000°F.

More data on sheets of various thicknesses are shown in Table 28.

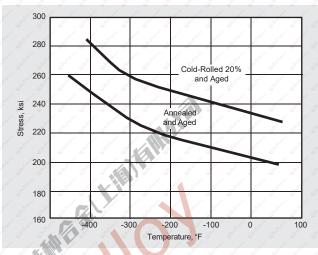


Figure 2. Notch tensile strength of 0.031-in. sheet, heat-treated in accordance with AMS 5596 (Kt=7.2; transverse tests).

Table 23 - High-Temperature Tensile Properties of Cold-Rolled 0.054-in. Sheet Annealed in Accordance with AMS 5596

and Station	Temperature, °F	an Shalinann Shalin	Tensile Strength, ksi	Yield Strength (0.2% Offset), ksi	Elongation, %
- 3 ¹⁰ /	Room	an an	135.0	76.0	44.5
	1000		119.5	55.5	43.0
	1200		120.0	72.0	32.0
	1400		103.0	64.5	7.0
	1600		74.5	52.5	39.0

Table 24 - Tensile Properties of 0.065-in. Cold-Rolled Sheet

Condition ^a	G rain Size, ASTM N o.	T est Temperature, ⁰F	Tensile Strength, k si	Yield Strength (0.2% Offset), ksi	Elongation, %	Hardness
Annealed	J J 7	Room	141.0	73.0	38.0	99 Rb
Annealed and Aged ^b	and the second second	Room	214.0	.188.5	15.0	46 Rc
Annealed and Aged		1200	166.0	149.5	13.5	Strate State State State

^aIn accordance with AMS 5596.

^bStress-rupture properties at 1300°F and 72.5 ksi: 35.3 hr life, 22.0% elongation.

Table 25 - Room-Temperature Tensile Properties of Cold-Rolled Sheet, Annealed and Aged in Accordance with AMS 5596ª

Thickness, in.	Tensile Strength, ksi	Yield Strength, ksi	Elongation, %	Hardness, Rc
0.187	205	177	20	44
0.156	207	180	20	44
0.125	206	178	of of 19 of of a	44 5 5
0.100	209	183	19	44
0.063	205	179	19	44
0.035	208	184	18	44
0.025	203	J J J J J J J	a a 19 a a a	م الم الم الم الم الم الم الم الم الم ال

^aEach size average of four samples, four heats.

Thickness, in.	Temperature, °F	Tensile S trength, k si	Yield Strength (0.2% Offset), k si	Elongation, %	Hardness, R c	Notch Tensile S trength, ksi (Kt=6.3)	Notch/Unnotch Tensile Strength R atio
0.025	Room	204.5	177.0	14.0	48	States States - States States	Sharen Sharen - Sharen Sharen
station station station	-320	253.5	203.0	12.5	48	215.5	0.85
0.062	Room	205.75	174.5	19.0	45	204.0	0.99
(30% Reduction) ^a	-320	254.25	200.0	20.0	45	219.5	0.86
0.075	Room	201.0	170.25	18.0	44	213.25	1.06
(10% Reduction) ^a	-320	249.25	194.25	18.0	44	233.25	0.94
0.93	Room	202.0	170.5	16.0	41	and the set of	n sunda sunda sunda sun
Steel Steel Steel Steel	°-320	251.0	189.5	22.5	45	244.0	0.97
0.125	Room	205.5	J81.0	13.5	47	a - and and	State State - State State
the fragment of the fragment of the fragment	-320	262.5	208.5	18.0	46	255.0	0.97

Table 26 - Tensile Properties of Cold-Rolled Sheet (Annealed and Aged in Accordance with AMS 5596; Transverse Tests)

^aValues for these specimens are averages of 2 tests.

Start Start Start Start Start Start	Test	Tensile	Yield Strength	Elongation,	Notch Tensile	Tensile Strength/		otch Tensile gth to
Sample	Temperature, °F	Strength, ksi	(0.2% Offset), ksi	%	Strength, ksi (Kt=6.3)	0.297 Ib/cu. in.ª	Tensile Strength	Yield S trength
Cold-Rolled, Annealed	-110	212.0	168.5	25.0	195.0	714,000	0.92	1.16
and Aged in Accordance	85	196.0	163.0	21.0	183.0	660,000	0.93	1.12
with AMS 5596	85⊧	197.0	162.5	21.0	178.0		0.91	1.10
Steel Steel Steel Steel Steel	350	191.0	153.0	20.0	on or on	3 ⁴⁴ 3 ⁴⁴ _ 3 ⁴⁴ 3		State State
Shateen Sheteen Sheteen Sheteen Sheteen Shetee	650	171.5	141.5	20.0	158.0	578,000	0.92	1.11
Shaftware shaftware shaftware shaftware shaftware shaftware	650 ^b	172.0	137.5	23.0	163.0	the first she want to be first the	0.95	1.19
and and and and a	800	188.0	141.0	23.0	156.0		0.83	1.11
Star Star Star Star Star Star	1000	169.0	135.0	24.0	143.0	570,000	0.85	1.06
Cold-Rolled and Aged	-320	260.5	229.0	/ 13.0	236.5	877,000	0.91	1.03
in Accordance with	-110	232.0	206.5	17.0	209.0	781,000	0.88	1.01
AMS 5596	85	221.0	198.5	12.0	196.5	745,000	0.89	0.99
Str. Str. Str. Str. Str. Str.	85⊧	212.0	195.5	13.0	199.0	or <u>or or or o</u>	0.94	1.02
and and a second and a second and and a second and a second	350	205.0	188.5	12.0	179.0	Stealer Stealer Stealer	0.88	0.96
	650	193.5	179.0	12.0	173.5	652,000	0.90	0.97
Strater Strater Strater Strater Strater	650 ^b	198.5	182.0	13.0	172.0	Ander Ander	0.87	0.95
	800	· · · · ·		<u> </u>	169.0	or or or or o	at at at	3 3 3 5 A
Staff" Staff" Staff" Staff" Staff" Staff	1000	180.5	165.3	10.0	166.5	608,000	0.92	1.01

Table 27 - Tensile Properties of 0.027-in. Sheet Reduced 20% (Transverse Tests)

^aRoom-temperature density.

^bStressed at 40 ksi for 1000 hr at 650°F prior to testing.

Test Temperature, ⁰F	Test Orientation ^a	Tensile Strength, k si	Yield Strength, ksi	Elongation, %	Notch Tensile Strength⁵, psi	Notch/Unnotch Tensile Strengtl Ratio
Statement Statement Statement Statement	and Stationed Stationed Stationed	0.010-in.	Material - Annealed	(Heat 1)	Station Station Station	aller all all and a state of the state of th
75	and share she share share	114.0	47.3	43	89.2	0.78
and and and and	J J J J	116.0	47.0	49	88.8	0.77
-320	Star Start C Start Start	152.0	70.7	50	121.0	0.80
June Stern Stern Stern St	and share share T share share	157.0	75.8	43	118.0	0.75
-423	and share she have show the	187.0	97.3	49	146.0	0.78
	π,	176.0	91.8	40	142.0	0.81
leef Steel Steel Steel St	Star Star Star Star	0.010-in. Mate	rial - Annealed and A	Aged (Heat 1)	Star Star Star Star	and State State State S
75	or starter starte starter starter	192.0	155.0	21	198.0	1.03
Star Star Star Star	and start start start	189.0	154.0	20	196.0	1.04
-320	, , , , , , , , , , , , , , , , , , ,	243.0	186.0	26	234.0	0.96
and shall shall shall shall sh	State State T State State	239.0	181.0	22	229.0	0.96
-423	and stand stand stand	267.0	200.0	21	254.0	0.95
	and strand strand strand	262.0	195.0	21	259.0	0.99
			erial - Annealed and A			
75	Start Start Lotar Start	195.0	S AN AN AN AN	20	207.0	1.06
Warman Stranger Startan Startan	and Statement Statement Statement	194.0	157.0	20	206.0	1.06
-100	and support support support	214.0		23	221.0	1.03
		213.0	170.0	23	223.0	1.04
-320	L of L of	232.0	185.0	33	214.0	0.92
and Street Street Street St	T Charles Charles T	247.0	192.0	26	229.0	0.93
-423	and and a second and a second	278.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	28	276.0	0.99
		276.0	204.0	27	269.0	0.97
1 5 ¹ 5 ¹ 5 ¹ 5	Start Start Start	ال الارد الارد الارد الارد الارد	- 20% Cold-Rolled a	10 A. 10	5 5 5 5 5 5	
75	State State - State - State	214.0	10 10° 10° 10° 10°	15	238.0	1.11
and a start a start of a	na na successione de la constante	204.0		13	226.0	1.11
-320	and and and and	268.0		25	272.0	1.01
en den den den de	The state of the s	254.0	214.0	21	262.0	1.03
-423	Contraction of	286.0		28	293.0	1.02
and reading and the second	T	281.0	228.0	22	286.0	1.02
and and and and				ed and Aged (Heat 3)	200.0	
75		230.0	• A A A A	7	248.0	1.08
Farm States States States St	Start Start Start	223.0	206.0	Jan Jan Jan Jan Jan Jan	248.0	1.11
-100	and shared share and	249.0	S S S S	and and and and and 11	267.0	1.07
	and the second	242.0		8	262.0	1.08
-320		292.0	ನ್ ನ್ ನ್ ನ್	16	292.0	1.00
and Share Share SEC	Contraction Contraction	273.0		13	285.0	1.04
-423	The state state L states state	309.0		15	309.0	1.04
-+Z3	T	295.0		16	301.0	1.00
len allen allen alle alle alle		28 28 28 28 28 28	$\mathcal{A}^{\mathbf{Y}} = \mathcal{A}^{\mathbf{Y}} = \mathcal{A}^{\mathbf{Y}} = \mathcal{A}^{\mathbf{Y}}$	ed and Aged (Heat 3)	001.0	1.02
75	and the second second	240.0		6	261.0	1.09
-320	and the second	240.0	5	9	304.0	1.09
-423	and set and the set of the set	337.0		12	320.0	0.95

Table 28 - Low-Temperature Tensile Properties of Sheet (Heat-Treated in Accordance with 5596)

^aL, longitudinal; T, transverse.

^bNotch concentration, K_t, 6.3

IMPACT STRENGTH

Room-temperature impact strength of some hot-finished products are shown in comparison with their tensile properties in Table 29. The data also point out the effect of annealing at 1750°F and aging at 1325°F/8 hr, F.C. to 1150°F, hold at 1150°F for total aging time of 18 hours versus annealing at 1950°F and aging at 1400°F/10 hr, F.C. to 1200°F for total aging time of 20 hours. Some impact properties of a pancake forging are shown in Table 11 (page 7). Low-temperature impact strength of plate is shown in Table Table 30 - Impact Strength of 1-in. Plate (Annealed and Aged in Accordance with AMS 5596)

Tauratanatina 80	Impact Strength, ft•lb						
Temperature, °F	Charpy Keyhole	Charpy V-Notch					
Room	15.5, 16.0, 17.0	19.5, 20.5, 22.5					
^ی -320	13.5, 13.5, 15.0	18.5, 19.0, 19.5					

30.

-		10 A.	. C. S.	<u></u>	<u></u>	
1 able 29 -	Room-le	mperature	Impact	Strength o	f Hot-Finished	Products

Diameter ^a , in.	trat orat orat orat orat orat	Tensile Properties (Longi	tudinal Orientation)		Charpy V-Notch	
	Tensile Strength, k si	Yield Strength (0.2% Offset), ksi			Impact Strength, ft•II	
Heat Treatm	ent: 1750°F/1 hr, A.C. + A	Aged 1325°F/8 hr, F.C. to '	1150°F, Hold at 115	0°F for Total Aging Time	of 18 hours	
0.625	208.0	180.0	21.0	39.0	18.5	
State State States	209.0	174.0	20.0	24.8	10.0	
1.5	204.0	165.5	19.0	24.5	11.0	
8	209.0	183.5	17.0	32.0	13.0 ^b	
12	196.0	165.0	25.0	39.1	24.0 ^b	
Heat Treatme	ent: 1950°F/1 hr, A.C. + A	ged 1400°F/10 hr, F.C. to	1200°F, Hold at 120	0°F for Total Aging Time	of 20 hours	
0.625	194.0	157.0	23.0	34.0	26.0	
1	188.0	152.0	21.0	34.0	33.0	
1.5	191.0	153.0	24.0	36.0	28.5	
J 38 J J	194.5	160.0	22.0	34.3	35.0 ^b	
12	192.5	162.0	27.0	42.0	39.0 ^b	

^aDiameters of 8- and 12-in. were forged; others are hot-rolled. ^bAverage of 2 tests.

FATIGUE STRENGTH

Room-temperature fatigue properties of annealed and annealed and aged (1750°F, plus 1325°F/8 hr, F.C. to 1150°F, hold at 1150°F for total aging time of 18 hours) forging specimens are shown in Table 31. Table 32 presents fatigue strength of hot-rolled plate annealed and aged in accordance with AMS 5596.

Fatigue strength of cold-rolled sheet is shown in Figure 3.

If fatigue strength is of prime importance, INCONEL alloy 718 forgings can be used in the annealed rather than the annealed and aged condition; aging raises fatigue strength only slightly (less than 4 ksi in Table 31).

Grain size is a major factor in achievement of high fatigue strength. Its effect can be seen in Figure 4. The lowtemperature heat-treatment schedule (such as that in AMS 5596) will promote the requisite fine grain. See also Tables 31 and 32. High-temperature fatigue strength of annealed and aged bar is shown in Table 33.

Low-cycle fatigue life of INCONEL alloy 718 is the same whether tested in fully reversed bending or in zero-tomaximum bending. Test results are shown in Figure 5.

	Table 31 -	Room-Temp	erature Fa	tigue Stre	ength of 6	- by	9-in.	Forging ^a
--	------------	-----------	------------	------------	------------	------	-------	-----------------------------

Station Station Station Station	Station Station Station Station	T ensile P	roperties	area Station Station Station St	Station Station Station	Fatig	ue Strength	, ksi 🧹 🦿
Condition ^b	Tensile Strength, k si	Yield Strength (0.2% Offset), ksi	Elongation, %	Reduction of A rea, %	Grain Size, in.	10 ⁶ Cycles	10 ⁷ Cycles	10 ⁸ Cycles
Annealed	143.0°	99.5°	32°	32°	0.0023	74.0	67.5	66.5
Annealed and Aged	191.25	169.5	10.5	20	0.0021	77.5	71.0	69.5

^aRotating-beam fatigue tests. Values are average of 2 samples (polished specimens)--center short transverse and mid short transverse. ^bAnnealing at 1750°F/1 hr Aging at 1325°F/8 hr, F.C. to 1150°F, hold at 1150°F for total aging time of 18 hr. °Values for center short transverse only.

States States States States States States States States			Tensile Properties				Fatigue Strength, ksi		
Heat Treatment ^b	Test Orientation	Tensile S trength, k si	Yield Strength (0.2% Offset), ksi	Elongation, %	Reduction of Area, %	Girain- Size, in.	10 ⁶ Cycles	10 ⁷ Cycles	10 ⁸ Cycles
Annealed	Longitudinal	132.5	58.0	46	46.6	0.0008	73.0	70.0	70.0
AnnealedandAged	Longitudinal	201.5	159.5	26	46.0	0.0005	96.0	81.0	78.0
and and and a	Transverse	199.0	158.0	24	38.0	0.0007	and the set	a constant constant	cost cost
Annealedand Aged	Longitudinal	202.0	160.5	26	44.5	0.0015	96.0	88.0	85
Shafer Shafer Shafer Stafe	Transverse	197.5	159.0	24	41.0	0.0005		Shelfer Shelfer 3	ester Sterry S
Annealedand Aged	Longitudinal	196.5	158.0	27	48.5	0.0009	91.0	82.0	77.0
Strater Stater Stater Sta	Transverse	196.5	158.0	27	43.0	0.0008	war war ya	Strater Strater	Transfer Transfer
Annealedand Aged	Longitudinal	191.0	153.5	28	41.5	0.0014	90.0	81.0	74.0
dealer classe classe class	Transverse	188.5	151.5	28	41.5	0.0013	atri of atri	Stafe Stafe 3	offer States St
Aged	Longitudinal	215.0	193.5	20	39.1	0.0008	95.0	84.0	80.0
Straff Straff Staff St	Transverse	210.0	187.0	17	37.5	0.0012		Control Control	Traff Traff

Table 32 - Room-Temperature Fatigue Strength of 1.125-in. Hot-Rolled Plate^a

^aFatigue tests run on R.R. Moore rotating-beam fatigue machines at 10,000. Specimens were 0.300-in. diameter polished longitudinally. ^bIn accordance with AMS 5596.

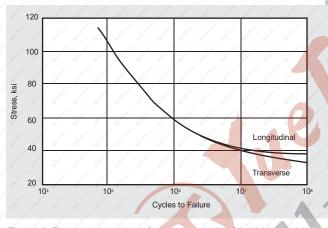
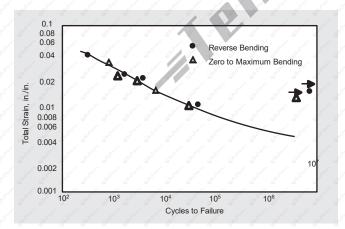



Figure 3. Room-temperature fatigue strength of 0.068-in. coldrolled sheet annealed and aged in accordance with AMS 5596 (Krouse tests). Average grain size, 0.002 in.

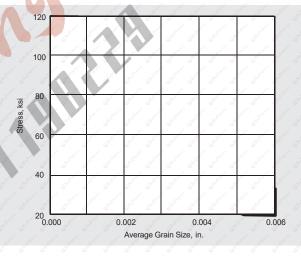


Figure 4. Effect of grain size on endurance limit (10^e cycles) of plate annealed and aged in accordance with AMS 5596.

Figure 5. Low-cycle life of plate annealed and aged in accordance with AMS 5596. (Test orientation parallel to rolling direction). Grain size, 0.0021-in. Modified Krouse plate fatigue machine.

Test Temperature,	and a constant and the	Fatigue Str	ength, ksi	and the second
°F	10⁵ Cycles	10 ⁶ Cycles	10 ⁷ Cycles	10 ⁸ Cycles
Room	132.0	101.0	92.0	90.0
600	115.0	110.0	110.0	110.0
1000	111.0	102.0	95.0	90.0
j j j j j j j j j j j j j j j j j j j	100.0	of of of 94.0	S S S 88.0	ి లో లో లో 72.0

Table 33 - High-Temperature Fatigue Strength of Hot-Rolled Bar (Annealed 1750°F/1 hr, A.C. and Aged)^a

^aRotating-beam tests. Average grain size, 0.0008-in. Aging--1325°F/8 hr, F.C. to 1150°F, hold at 1150°F for total aging time of 18 hr.

RUPTURE AND CREEP PROPERTIES

For creep-limited and rupture-limited applications INCONEL alloy 718 is annealed at 1700°F-1850°F and aged at 1325°F/8 hr, F.C. to 1150°F, hold for total aging time of 18 hours (or an equivalent treatment such as in AMS 5596). Rupture and creep properties shown in this bulletin are typical of material receiving this low-temperature treatment.

Figure 6, a plot of high-temperature rupture life, also shows the excellent properties at 1200° and 1300°F of notch specimens of small-diameter bar.

Figure 7 shows creep strength of annealed and aged hot-rolled bar.

These rupture and creep data have been used for construction of Larson-Miller and Manson-Haferd parameter plots (Figures 8 and 9). For convenience in design, the typical properties are also shown on the basis of 100, 1000, and 10,000 hours (Figures 10, 11 and 12).

Rupture properties of annealed and aged cold-rolled sheet are shown in the form of a Larson-Miller parameter plot (Figure 13). As indicated by the specifications, thickness will influence rupture life.

Rupture life of round and sheet in comparison with tensile properties is shown in Tables 9 (page 6) and 24 (12).

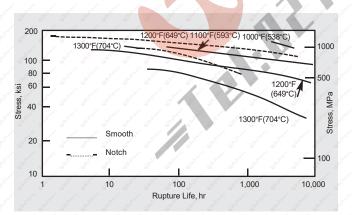


Figure 6. Smooth and notch rupture life of hot-rolled bar, 0.625in.(15.9 mm) diameter ($1800^{\circ}F(982^{\circ}C)/1$ hr, W.Q. and aged $1325^{\circ}F(718^{\circ}C)/8$ hr, F.C. to $1150^{\circ}F(621^{\circ}C)$, hold at $1150^{\circ}F(621^{\circ}C)$ for total aging time of 18 hr), Kt=4.

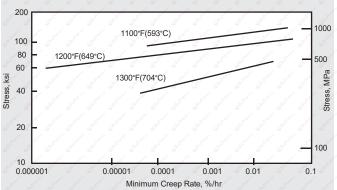


Figure 7. Creep strength of hot-rolled bar 0.625-in.(15.9 mm) diameter (1800°F(982°C)/1 hr, W.Q. and aged 1325°F(718°C)/8 hr, F.C. to 1150°F(621°C), hold at 1150°F(621°C) for total aging time of 18 hr).

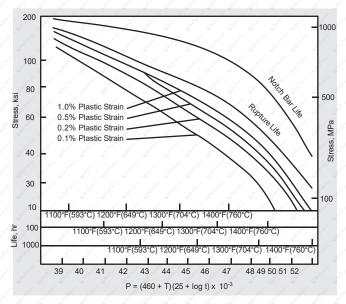


Figure 8. Larson-Miller parameter plot of rupture life of hot-rolled, 0.625-in.(15.9 mm) diameter bar (1800°F(982°C)/1 hr, W.Q. and aged 1325°F(718°C)/8 hr, F.C. to 1150°F(621°C), hold at 1150°F(621°C) for total aging time of 18 hours). In the Larson Miller parameter, P,T is temperature, °F, and t is time, hr.

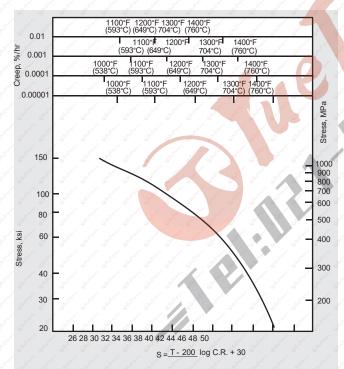


Figure 9. Manson-Haferd parameter plot of minimum creep rate of hot-rolled bar, 0.625-in. (15.9 mm) diameter (1800°F(982°C)/1 hr, W.Q. and aged 1325°F(718°C)/8 hr, F.C. to 1150°F(621°C), hold at 1150°F(621°C) for total aging time of 18 hr). In the Manson-Haferd parameter, S, T is temperature, °F, and C.R. is creep rate.

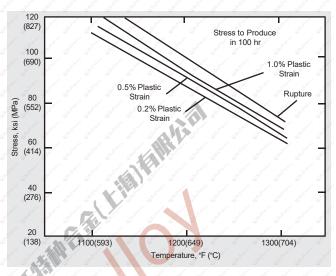


Figure 10. Creep-rupture properties (100 hr) of hot-rolled, 0.625-in. (15.9 mm) diameter bar (1800°F(982°C)/1 hr, W.Q. and aged 1325°F(718°C)/8 hr, F.C. to 1150°F(621°C), hold at 1150°F(621°C) for total aging time of 18 hr).



Figure 11. Creep-rupture properties (1000 hr) of hot-rolled, 0.625in. (15.9 mm) diameter bar ($1800^{\circ}F(982^{\circ}C)/1$ hr, W.Q. and aged $1325^{\circ}F(718^{\circ}C)/8$ hr, F.C. to $1150^{\circ}F(621^{\circ}C)$, hold at $1150^{\circ}F(621^{\circ}C)$ for total aging time of 18 hr).

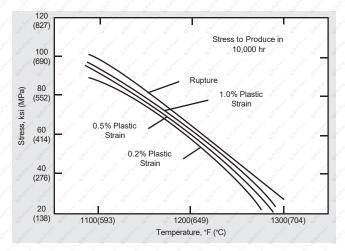


Figure 12. Creep-rupture properties (10,000 hr) of hot-rolled, 0.625-in. (15.9 mm) diameter bar ($1800^{\circ}F(982^{\circ}C)/1$ hr, W.Q. and aged $1325^{\circ}F(718^{\circ}C)/8$ hr, F.C. to $1150^{\circ}F(621^{\circ}C)$, hold at $1150^{\circ}F(621^{\circ}C)$ for total aging time of 18 hr).

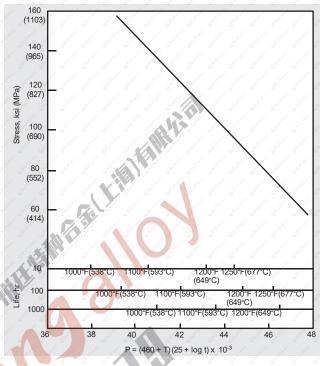


Figure 13. Larson-Miller parameter plot of rupture life of cold-rolled sheet, 0.025-0.250 in. (0.64-6.35 mm) (Annealed and aged in accordance with AMS 5596). In the Larson-Miller parameter, P,T is temperature, °F, and t is time, hr.

WELD PROPERTIES

INCONEL alloy 718 is readily welded by the gas tungstenarc (TIG) process using INCONEL Filler Metal 718. Composition of this filler metal is shown in Table 34. Mechanical properties of its all-weld metal specimens are shown in Table 35. These test data show the effect of postwelding treatment on tensile properties. Highest roomtemperature ductility is obtained by annealing at 1950°F prior to aging.

Slow response of alloy 718 to age hardening enables parts to be welded and directly age-hardened without an intermediate stress relief. Joint efficiencies very close to 100% were realized in the tests shown in Table 38; these specimens were from plate that had been annealed, then welded and aged. Better properties, however, are obtained by re-annealing after welding prior to aging.

Silver brazing compounds are known to cause stress cracking in nickel-based alloys. If alloy 718 is cold-worked and/or precipitation-hardened, silver brazing compounds should not be used. Also, brazing alloys containing cadmium are best avoided; while cadmium has not been shown to cause cracking by itself, it can aggravate cracking from other sources.

Table 34 - Composition, %, of INCONEL Filler Metal 718

Nickel (plus Cobalt)	
Copper	
Manganese	
Iron	Balance
Silicon	0.35 max.
Carbon	0.08max.
Sulfur	0.015 max.
Titanium	
Aluminum	0.20-0.80
Niobium (plus Tantalum)	4.75-5.50
Chromium	
Molybdenum	
Phosphorus	0.015 max.
Cobalt	1.00 max.
Boron	0.006 max.

F iller Metal D iameter, in.ª	Heat Treatment ^b	Tensile Strength, k si	Yield Strength (0.2% Offset), ksi	Elongation, %	Reduction o f Area, %
0.045	As-Welded ^c	125.50	84.30	28.0	30.0
	1750°F, Age	180.25	148.50	7.8	12.3
	1950°F, Age	197.25	162.75	18.8	26.5
	1325°F, Age	186.00	153.50	11.0	13.5
0.045	As-Welded	120.75	82.30	28.0	30.5
	1750°F, Age	169.50	144.00	7.8	12.0
	1950°F, Age	193.50	164.85	13.3	17.0
	1325°F, Age	180.50	147.75	7.8	10.3
0.09375	As-Welded	123.75	84.00	28.0	31.3
	1750°F, Age	174.50	145.25	7.7	12.5
	1950°F, Age ^c	197.00	168.50	10.0	18.0
	1325°F, Age ^c	166.50	150.50	4.0	4.0
0.062	As-Welded ^c	125.20	83.50	28.0	37.5
	1750°F, Age	174.50	152.00	4.9	7.0
	1950°F, Age	198.00	179.25	13.8	21.5
	1325°F, Age ^c	175.50	151.00	4.0	7.5
0.062	As-Welded	123.25	75.05	34.3	35.3
	1750°F, Age	180.00	144.00	12.6	18.0
	1950°F, Age ^c	196.50	161.00	16.0	31.0
	1325°F, Age	176.75	140.00	15.5	22.5

Table 35 - Effect of Postwelding Heat Treatment on Tensile Properties of INCONEL Filler Metal 718 All-Weld Metal (Manual Gas Tungsten-Arc Process between 0.5-in. Plates) (Average of 2 Tests)

^aEach separate size shown represents test run on separate heat.

^bHeat treatments: 1750°F, Age is 1750°F anneal plus age at 1325°F/8 hr , F.C. 100°F/hr to 1150°F, hold at 1150°F for a total of 18 hours. 1950°F, Age is 1950°F anneal plus age at 1400°F/10 hr, F.C. 100°F/hr to 1200°F, hold at 1200°F for a total aging time of 20 hours. 1325°F, Age is at 1325°F/8 hr, F.C. 100°F/hr to 1150°, hold at 1150°F for total aging time of 18 hr.

Condition After

Welding and

Aging

Crack-Free

Repair

Weldingand

Re-Aging

Crack-Free

Crack-Free

Crack-Free

Crack-Free

Cracked

Crack-Free

Cracked

Crack-Free

Crack-Free

Crack-Free

Cracked

Cracked

Crack-Free

^cOne test only.

Sheet

Thickness,

in.

0.028

0.030

0.030

0.035

0.035

0.062

0.062

0.062

0.062

0.062

0.078

0.093

0.109

Table 36 - Weld-Patch Testing of Cold-Rolled, Annealed Sheeta
(Procedure: Anneal plus Weld plus Age plus
Repair-Weld plus Re-Age)

Patch Test

Assembly^b

1

1

1

1

2

2

2

1

1

2

1

2

2

Table 37 - Room-Temperature Tensile Propertie	es ^a
(Transverse Tests) of Welds in 0.5-in. Plate	
(Gas Tungsten-Arc Process Using INCONEL Filler Metal	718)

Postweld Heat Treatment ^b	Tensile Strength, ksi	Yield Strength (0.2 % Offset), ksi	Elongation in 1 In., %	Reduction of A rea, %
Direct Age	185.0	158.0	6.5	15.8
Annealed and Aged	190.0	163.3	7.5	13.9
Annealed and Aged	191.5	164.5	9.5	16.3

^aAverage of 2 tests.

^bAccording to AMS 5596.

^a Seven different heats represented in these tests.
^b See Figure 15.

Heat

Treatment

AMS 5596

AMS 5597

Table 38 - Room Temperature Tensile Properties of Welds (Aged 1325°F/8 hr, F.C. to 1150°F, Held at 1150°F for Total Aging Time of 18 Hours)^a

Tensile Strength, ksi	Yield Strength (0.2% Offset), k si	Elongation in 1 ln., %	Reduction of Area, %
	Transverse Tests	Across Joints	State State State
183.0	159.5	8.0	19.0
183.5	158.5	7.0	16.0
186.5	162.0	6.0	12.8
185.5	163.0	6.0	21.0
184.0	163.0	6.0	16.5
192.5	166.0	9.0	17.5
191.5	164.0	6.0	12.5
182.0	156.5	4.0	6.8
188.5	168.0	4.0	11.5
188.0	170.0	5.0	10.0
Average 186.5	163.0	6.0	14.4
Star Star Star Star	All-Weld Me	etal Tests	
180.5	157.5	10.0 ک	16.0
182.5	162.0	8.0	14.0
178.0	154.0	11.0	12.5
177.5	150.0	14.0	18.5
180.0	153.5	10.0	22.0
180.0	158.5	7.0	11.5
183.5	160.5	6.0	8.5
Average 180.0	156.5	9.0	15.0

^a0.252-in.-diameter specimens prepared from TIG-welded 0.500-in. plate. Plate annealed in accordance with AMS 5596 prior to welding. All tests broke in weld. Filler metal was INCONEL 718.

Table 39 - Room-Temperature Ten	sile Properties ^a of Welds in 0.5-in.
Plate (Gas Tungsten-Arc Process	Using INCONEL Filler Metal 718)

Sample	Postweld Heat Treatment ^b	Tensile Strength, ksi	Yield Strength (0.2 % Offset), ksi	Elongation in 0.5 ln., %	
All-Weld Metal	Direct Age	174.50	139.25	18.3	21.5
an Indan Indan Inda	1950°F/1hr,Age	185.75	155.50	22.0°	31.8
Transversed	Direct Age	183.50	149.50	12.0	24.8
State State State	1950°F/1hr,Age	192.25	160.75	17.3	23.5

^aAverage of 2 tests.

^bAge-1400°F/10 hr, F.C. to 1200°F, hold at 1200°F for total aging time of 20 hours. ^cOne test.

^dAll fractures were in weld

Weld Tensile Properties

Room-temperature properties of welds receiving the lowtemperature anneal and/or age can be compared with results of the high-temperature anneal and/or age in Tables 38 and 39.

Additional properties of welds annealed at 1950°F/15 min. and aged at 1400°F/10 hr, F.C. to 1200°F, hold at 1200°F for a total aging time of 20 hours are shown in Table 40. Welding was by the manual gas tungsten-arc process, using Filler Metal 718. These welds were found satisfactory in bend tests and radiographic examination. Slightly better results were obtained when helium was used as the torch gas. Notch strength of butt-welded sheet in both the heat-affected zone and weld is shown in Table 41. These welds were heat-treated by the low-temperature schedule.

Another laboratory using the high-temperature heat treatment has found that notch toughness of the parent metal and that of the weld metal are quite consistent and exceed a notch-to-smooth bar tensile ratio of 1.30 throughout the test-temperature range of -423°F to 1200°F. Test data are shown in Table 42. The weld joint efficiency is approximately 93% at -423°F and 95% at room temperature and 1200°F.

Table 40 - Room-Temperature Tensile Properties of Annealed and Aged Welds in 0.063-in. Sheet^a

States	Weld	1	Tensile Strength, k si	Elongation In 1 in., %
aterna		Argon T	orch Gas; Helium Roo	t Gas
1	and a second	1	188.00	11.7
		2	184.20	10.0
Grate		3	184.50	10.0
Stelles		4	190.20	14.3
		5	192.70	17.3
			Average 187.92	12.7
		Helium	Torch Gas; Argon Roo	t Gas 🖉 🖉 🖉 🦿
	6	Steller Steller	189.20	11.7
	7	and the second second	191.00	15.3
	8	St. St.	187.80	12.7
	° 9	Stat Sta	191.70	ీ 18.3 ీ ర
	10	Stellor Stellor	194.00	18.7
		A station of the	Average 190.74	15.3

^aWelded manually with INCONEL Filler Metal 718. One bead. Average of 3 tests. All sheet from same heat. Heat treatment after welding: 1950°F/15 min., plus 1400°F/10 hr, F.C. to 1200°F, hold at 1200°F for total aging time of 20 hr.

Table 42 - Tensile Properties of Ring-Forging Specimens Gas-Tungsten-Arc Welded with INCONEL filler Metal 718 (Weldments Annealed 1950°F/1 hr and Aged 1400°/10 hr, F.C. to 1200°F, Hold at 1200°F for Total Aging Time of 20 hours)^a

S pecimen	Tensile Strength, ksi (0.2% Offset), ksi		Elongation, %	Reduction of Area, %	Notch Tensile Strength ^b , ksi	Notch/Unnotch Tensile Strength Ratio	
Room Temp.							
Parent Metal	197.5	163.8	25.5	38.5	272.8	1.38	
Weld	189.7	165.6	19.3	38.1	263.1	1.39	
-423°F							
Parent Metal	245.9	203.6	22.5	33.1	323.8	1.32	
Weld	237.9	201.0	19.7	30.7	308.7	1.30	
1200°F							
Parent Metal	143.8	125.7	21.1	40.7	207.4	1.44	
Weld	147.3	127.3	11.9	30.2	204.2	1.39	

^aData are averages of 2-5 tests.

^bNotch concentration factor, Kt, 6.3

Table 41 - Notch-Strength of Butt-Welded, 0.051-in. Cold-Rolled, Annealed Sheet

Treatment of Weld ^a	Notch Strength ^b , ksi				
Treatment of Weld"	Heat-Affected Zone	Weld			
Aged	154.0	129.0			
	183.8	133.5			
Annealed	175.0	132.3			
1800°F/1 hr and Aged	163.3	136.0			

^aAging--1325°F/8 hr, F.C. to 1150°F, hold for total aging time of 18 hr, A.C. All welds milled flush to parent metal. Welds made by automatic gas tungstenarc process with INCONEL Filler Metal 718.

 b Average of 2 values. Notches were milled in the center of the weld and in the parent metal about 0.025-in. from the fusion zone K_t, approximately 24.

Weld Shear Properties

Weld Fatigue Properties

Weldments were found to have a room-temperature fatigue strength (10⁸ cycles) of approximately 62.5 ksi (tested in R.R. Moore rotating-beam apparatus). They were made from hot-rolled, annealed (per AMS 5596) 0.500-in. plate, joined with 0.125-in.-diameter INCONEL Filler Metal 718 by the gas tungsten-arc process. Samples were aged 1325°F/8 hr, F.C. to 1150°F, hold at 1150°F for total aging time of 18 hours and tested as polished specimens. In comparable tests, alloy 718 bar had a fatigue strength (10⁸ cycles) of 89.0 ksi.

Shear strength of as-deposited Filler Metal 718 is shown in Table 43. The test specimens were taken from a 0.625-in. thick overlay made by the automatic gas tungsten-arc process using 0.062-in.-diameter INCONEL Filler Metal 718.

S pecimen ^a	Shear Strength⁵, k si	T ensile Strength, k si	Yield Strength, ksi	Elongation, %	Reduction of Area, %
А	86.0	121.0	73.5	27.0	30.0
В	86.5	120.0	73.4	28.0	26.5
С	80.0	120.0	72.0	30.0	33.8

Table 43 - Shear Strength of As-Welded INCONEL Filler Metal 718 Overlay on INCONEL Alloy 718

^aSpecimens from 0.625-in. thick, 3-in. wide, 6-in. long overlay. Axes were parallel to direction of welding. Gage diam. of tensile specimen, 0.252-in.; gage length, 4 x diam. Double-shear test specimens 0.250-in. diam., 1.5-in. long. ^bDouble shear.

Weld Rupture Properties

Rupture strength at 1200° and 1300°F of heat-treated weldments in sheet is compared with parent metal in Table 44. In other tests, welds whose process steps were age, weld, and age had lives of 0.3 hr (1200°F, 100.0 ksi) and 4.9 hr (1300°F, 72.5 ksi); fractures were in the heat-affected zone. Notch-bar life at 1300°F and 75.0 ksi is shown in Table 45.

Treatment of Weld	Test Temperature, °F	Test Temperature, °F Stress, ksi		Elongation, %	Location of Fracture
Parent Metal Annealed	1200	100.0	47.3	85.0	ar Shalar Shalar Shalar Shalar Shalar Sha
and Aged	1300	72.5	26.1	11.0	all stand when - stand stand with
Annealed and Aged	1200	100.0	10.8	1.0	Weld
	ាំ300 ំ	ళ ళ ళ 72.5	9.4	1.0	ଁ Weld ଁ
Aged	1200	100.0	16.4	1.0	Weld
	1300	72.5	15.8	2.0	Weld

Table 44 ·	 Rupture Strength 	of Butt Joint	s in Annealed	Sheet ^a
------------	--------------------------------------	---------------	---------------	--------------------

^a0.060-in. sheet, welded with INCONEL Filler Metal 718. Parent metal and weld heat-treated in accordance with AMS 5596. Welds ground flush.

Table 45 - Rupture Strength of Welds^a (Test Conditions: 1300°F and 75.0 ksi)

Specimen	Heat Treatment ^b	Life, hr	Elongation, %	Reduction of Area, %	Notch Bar Life, hr
All-Weld Metal	Aged	s s 11.7 s	4.0	1 S S S S S	6.0 14.1
All-Vield Ivielai	Annealed and Aged	122	5.0	and the second	7.5 45.5
Timpa pino loint	Aged	25.5	4.0 (in 0.5 in)	5.0	30.1
Transverse Joint₀	Annealed and Aged	15.3	3.0 (in. 0.5 in.)	8.5	25.1

^aWeld deposit by gas tungsten-arc process between 0.5-in. plates using INCONEL Filler Metal 718. ^bIn accordance with AMS 5596.

^cAll fractures in weld.

SPRING PROPERTIES

The excellent relaxation resistance of INCONEL alloy 718 is a factor in its successful use for springs at temperatures up to 1100°F. Some relaxation data are shown in Figure 14.

BOLTING

INCONEL alloy 718 combines excellent mechanical properties over a wide temperature range with superior oxidation and corrosion resistance. Because of these properties it is specified for many fastener applications where superior performance is required under varying environmental conditions.

INCONEL alloy 718 can be strengthened in two ways: (1) by solution treating and age hardening or (2) by cold working and age hardening only. See Table 46.

The use of alloy 718 for bolting applications is addressed under Section I and Section VIII, Division I of the ASME Code by Code Case 1993.

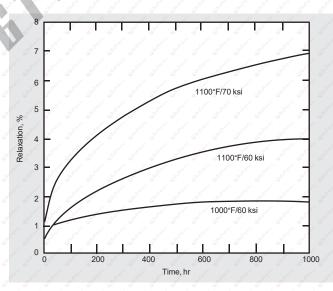


Figure 14. Relaxation of helical coil springs made from 0.148-in.diameter cold-drawn No. 1 Temper wire. (Springs annealed 1800°F/1 hr and aged 1325°F/8 hr, F.C. to 1150°F, hold at 1150°F for total aging time of 18 hr.

Diameter, in Yield Strength (0.2% Offset), ksi		Tensile Strength, k si	Elongation, %	Hardness, Ro
State State State State	at at at at at at at	As Cold Drawn	- 3 million - 3	State State State State State
0.51	and States States States States States States	Total States States - States States States States	States States States States States	or station station station station
0.76	161	178	16	41 / 5
1.01	150	176	15	38
<u> </u>	Can and a contra c	المحمد	a a a a a a a a a a a a a a a a a a a	Start Start Start Start Start
Colo	Drawn and Aged (1325°F/8 hr,	F.C. to 1150°F, hold at 1150°I	F for total aging time of 18	5 hr) 36 36 36 36
0.51	227	243	11	48
0.76	223	234	11	47
1.01	222	237	j (1 1	47
໌ 1.51 🦿 🦿	229	244 3 3 3	11	⁄ 46 ک
(17	Cold Dra 50°F/1 hr, A.C. then 1325°F/8 hr	wn, Solution Annealed and A F.C. to 1150°F, hold at 1150°		3 hr.)
0.51	168	211	20	42
0.76	165 / /	208	21 / / /	42
1.01	165	212	20	42
1.51	and and and and and and a			all wall with the same of

Table 46 -	Cold	Working	and	Ane	Hardening ^a
	COIG	vvontang	unu	1.90	riaraorning

^aAverage of minumum five samples from five different heats.

METALLOGRAPHY

INCONEL alloy 718 is an age-hardenable austenitic material. Strength is largely dependent on the precipitation of a gamma prime phase during heat treatment.

A major part of the development effort with this alloy was concerned with establishment of the proper heat treatments for producing optimum properties. These heat treatments and the applications for which they are intended are described in the section, Mechanical Properties.

The microstructure of alloy 718, especially with regard to the effects of heat treatment, has been extensively studied and reported. The literature should be consulted for detailed discussions on the various phases developed by various heat treatments and other metallurgical investigations.

CORROSION RESISTANCE

INCONEL alloy 718 has excellent corrosion resistance to many media. This resistance, which is similar to that of other nickel-chromium alloys, is a function of its composition. Nickel contributes to corrosion resistance in many inorganic and organic, other than strongly oxidizing, compounds throughout wide ranges of acidity and alkalinity. It also is useful in combating chloride-ion stress-corrosion cracking. Chromium imparts an ability to withstand attack by oxidizing media and sulfur compounds. Molybdenum is known to contribute to resistance to pitting in many media.

WORKING INSTRUCTIONS

Heating and Pickling

When INCONEL alloy 718 is heated care must be taken to maintain both the furnace and the material being heated at correct temperatures.

Fuels used for heating must be extremely low in sulfur. The alloy must be absolutely clean and free from all oil, paint, grease, and shop soil when charged into the furnace.

The furnace atmosphere for forging or open annealing should be slightly reducing, containing at least 2% carbon monoxide. A slight positive pressure should be maintained in the furnace to prevent air infiltration.

When alloy 718 is heated in a reducing atmosphere, a thin, adherent green-black film of oxide will be left on the surface of the material. In oxidizing atmospheres, a heavy black scale is produced that is very difficult to remove. Every precaution should be taken in heating so that only the green-black film is formed.

Hot Forming

Because of its strength, INCONEL alloy 718 is more resistant than most materials to deformation during hot forming. Its relative resistance is shown by pressures developed in the roll gap at 20% reduction (Table 47). It is readily hot-worked if sufficiently powerful equipment is used.

Hot forming is performed in the 1650°-2050°F temperature range. In the last operation, the metal should be worked uniformly with a gradually decreasing temperature, finishing with some light reduction in the 1650°-1750°F range. This procedure is necessary to ensure notch ductility in stress-rupture applications when material has been annealed and aged. (See below). In heating for hot working, the material should be brought up to temperature, allowed to soak a short time to ensure uniformity, and withdrawn.

To avoid duplex grain structure INCONEL alloy 718 should be given uniform reductions. Final reductions of 20% minimum should be used for open-die work and 10% minimum for closed-die work. Parts should generally be aircooled from the hot-working temperature rather than waterquenched.

Care should be taken to avoid overheating the metal by heat buildup due to working. Also, the piece should be reheated when any portion has cooled below 1650°F. Preheating tools and dies to 500°F is recommended. Any ruptures appearing on the surface of the workpiece must be removed at once.

Data shown in Table 48 show the importance of a 1650°F-1750°F finish-forging temperature for achievement of notch ductility in large forgings in stress-rupture applications. In these tests, 0.75-in. square forged bar was cut into 12-in. lengths, heated to the rolling temperatures shown in Table 48, and given 25% reduction in one pass. Following annealing and aging, specimens were rupture-tested at 1200°F and 100 ksi. Success in achieving notch-rupture ductility with forgings of alloy 718 through this type of procedure has also been reported by others.

Table 47 - Pressure, ksi, Developed in Roll Gap at 20% Reduction

	Pressure, ksi Hot-Forming Temperature, °F						
Material							
	1800	1900	2000	2 100			
Mild Steel (1020)	22.4	18.3	14.3	10.3			
Type 302 Stainless Steel	27.8	24.3	21.4	18.0			
INCONEL alloy 600	40.8	34.6	28.3	22.3			
INCONEL alloy X-750	48.6	43.3	38.4	33.3			
INCONEL alloy 718	63.3	55.8	48.3	41.0			

T - 1-1 -	40	Eff = + + +	ALC: A DR		a second and and and	4	Desident	Dura di sali	40000	400 1!	۱
I anie	- 48 -	Effect c	DT HOT-FO	rmind 1	emper	ature on	Runture	Properties ^a	1200*	100 KSI)
1 GIDIC		LIIOOUC		i i i i i i i g		acaro on	raptaro	i lopolitioo	12001,	100 100	1 1

44

Hot-Forming	Heat Treatment ^b	34 ¹¹ 3 ⁴¹ 3 ⁴¹ 3 ⁴¹ 3 ⁴ 3 ⁴ 3 ⁴	Smooth Bar				Notch Bar
Temperature, °F		ASTM Grain Size	Life, hr	Elongation, %	Reduction of Area, %	Hardness, Rc	Life ^c , hr
2050	A	20% 0.5, 30% 4.5, 40% 6.5, 10% 9	193.5	3	6.5	45	16.2
States States States States	B S	100% 1.5	209.5	4 ^ک کې کې کې	8.5	46	16.5
1950	A	70% 8, 30% 3	274.5	Jul Jul Jul 7	9.0	45	55.1
all and all and all and all and	В	60% 3, 30% 8, 10% 7	291.4	8	10.0	45	56.7
1850	A	95% 4.5, 5% 9	193.3	11	16.0	46	123.9
State State State State	в	35% 4.5, 60% 9, 5% 7	231.6	ో ో 10	13.0	ళ ళ 46	99.2
1750	A	20% 6, 20% 7, 60% 10	121.3	/ / /13	22.0	46	131.4
aller aller aller	B	40% 7, 55% 9, 5% 5	248.3	14	16.0	46	179.6
1650	A	100% 9.5	48.0	33	53.5	46	426.2 ^d
Strat Stat Stat Stat i	[™] 8 ^{∞°} 3 [∞]	100% 9.5	124.3	a a a a a a a a a a a a a a a a a a a	43.5	46	426.1ª

^aHot-finished, 25% reduction, one pass.

^bA--1750°F/1 hr, A.C., + 1325°F/8 hr, F.C. 100°F/hr to 1150°F, hold at 1150°F/8 hr, A.C. B--

1800°F/1 hr, A.C., + 1325°F/8 hr, F.C. 100°F/hr to 1150°F, hold at 1150°F/8 hr, A.C.

^cK_t, 3.5 to 4.0; root diameter, 0.252-in

^dTest discontinued.

		and taken		Tests at Room	Temperature	Tests at -320°F			
Col	d Reduc %	ction,	Tensile Strength, ksi	Yield Strength (0.2% Offset), ksi	Elongation, %	Hardness, R c	Tensile Strength, ksi	Yield Strength (0.2% Offset), k si	Elongation, %
	0	de la const	117.0	44.0	60.0	87 Rb			and
		5.9	^م 115.0	68.2	45.0	^{لا} ن 19	161.0	103.0	38.0
		18.5	145.0	116.5	25.0	33 🖉 🖉	189.0	153.0	24.0
		27.9	159.5	134.0	10.5	36	204.0	169.0	15.0
		48.3	191.0	165.0	7.0	40	231.0	204.0	15.0
		Ster 1	Aged 1325°F/8 h	r, F.C. 100°F/1 hr to	0 1150°F (Held for	Total Aging Tim	e of 18 hr, A.C.) aft	er Cold Rolling	
	0	Stelled .	187.0	172.5	19.5	44	248.0	188.5	26.0
		5.9	203.0	175.5	22.0	45	255.0	211.0	13.0
		18.5	217.0	201.0	16.0	47	270.0	235.0	12.5
		48.3	244.0	232.5	4.0	49	289.0	269.0	2.5

Table 49 - Effect of Cold Reduction on Properties of Sheet

Cold Forming

INCONEL alloy 718 can be cold-formed by standard procedures used for steel and stainless steel. Figure 16 shows its rate of work hardening in comparison with other materials.

The effect of cold reduction on the tensile properties of sheet in the cold-rolled and cold-rolled and aged conditions is shown in Table 49.

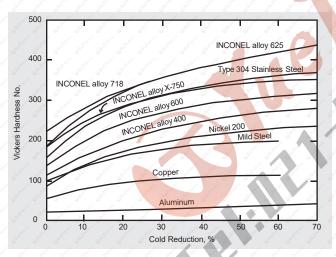


Figure 16. Effect of cold work on hardness.

Machining

INCONEL alloy 718 can be readily machined, but its high strength and work-hardening characteristics must be considered in the selection and use of proper tool materials and design, operating speeds, and coolants.

When machined in the age-hardened condition the alloy will have a slightly better finish; chip action on chipbreaker tools will be better. The use of annealed material, however, provides easier machining and longer tool life.

Super-Plastic Forming

A special grade of alloy 718 that is specifically designed for the super-plastic forming process is manufactured by Special Metals. This alloy, designated INCONEL alloy 718SPF, is available as annealed sheet in thicknesses from 0.02 to 0.08 inches (0.5 to 2.0 mm) in widths up to 36 inches (914 mm). The specification SAE AMS 5950 was developed to define the requirements for the alloy. Complete information describing the properties of alloy 718SPF and how it is formed is available in the technical bulletin for the alloy on the website <u>www.yttzhj.com</u>.

Bending

A guide to the minimum bend diameters of hot-rolled and annealed plate and annealed sheet and strip is given in Table 50. In the determination of those diameters a sample is judged to have passed the 180°-bend test if its surface shows no ductile fracturing. Because of the effect of various surface conditions and heat treatments on bendability, the bends cannot be guaranteed. Many of the materials can nevertheless be bent in stages to tighter bends than those that are suggested in Table 50, provided that the initial bend is not severe.

Table 50 - Minimum Bend Diameters for Annealed Sheet and Strip and Hot-Rolled and Annealed Plate in 180° Bend

and share share share share	Thickn	Minimum Diameter ^a	
Alloy	🥑 jn. 🖉 🧹 🦿 mm 💡		
infrance sharene sharene sharene share	Sheet and Strip	Sheet and Strip	abelieve abelieve abelieve abelieve
INCONEL alloy718 ^b	0.012-0.049	0.30-1.24	, 1T , .
	0.050-0.250	1.27-6.35	2T

^aBend tests were performed according to ASTM Standard Method E 290-77 with a guided-bed jig as described in ASTM Standard Method E 190-64 (Reapproved 1976).

^bSheared edges of samples of INCONEL alloy 718 were ground or machined.

Annealing and Age Hardening

For most applications, INCONEL alloy 718 receives one of the following treatments:

Anneal at 1700°-1850°F, A.C. and age at

1325°F/8 hr, F.C. to 1150°F, hold at 1150°F for total aging time of 18 hr, or

Anneal at 1900°-1950°F, A.C. and age at

1400°F/10 hr, F.C. to 1200°F, hold at 1200°F for total aging time of 20 hr.

Rate of furnace cooling during aging is not critical, but a rate of 100°F/hr is sometimes specified. Recommended total times should be observed. Properties of material receiving these heat treatments are shown in the section, Mechanical Properties.

The effect of annealing for 30 minutes at various temperatures on the grain size of sheet is shown in Figure 17.

Aging response of niobium-aluminum-titaniumhardened INCONEL alloy 718 is rather slow in comparison

with that of aluminum-titanium-hardened alloys. Thus, in most sizes, the alloy can be heated and cooled through the aging temperature range at normal speeds yet retain softness and ductility.

Figure 18 shows the effect of aging time and temperature on the hardness of annealed sheet. Virtually no hardening occurs during the first 2-3 minutes of exposure. This is ample time to permit air cooling after welding or annealing. An aluminum-titanium-hardened alloy having sufficient hardener content to approach the strength level of INCONEL alloy 718 would develop almost full hardness in the same period of time.

AVAILABLE PRODUCTS AND SPECIFICATIONS

INCONEL alloy 718 is designated at UNS N07718, UNS N07719, and Werkstoff Nr. 2.4668. It is listed inNACE MR-01-75 for oil and gas service. Alloy 718 is available as pipe, tube, sheet, strip, plate, round bar, flat bar, forging stock, hexagon, wire and extruded section.

Rod, Bar, Wire and Forging Stock - ASTM B 637, ASME SB 637, SAE AMS 5662, SAE AMS 5663, SAE AMS 5664, SAE AMS 5832, SAE AMS 5914, SAE AMS 5962, ASME Code Case 1993, ASME Code Case 2206, ASME Code Case 2222, AECMA PrEN 2404, AECMA PrEN 2405, AECMA PrEN 2952, AECMA PrEN 2961, AECMA PrEN 3219, AECMA PrEN 3666, ISO 9723, ISO 9724, ISO 9725, DIN 17752-17754

Plate, Sheet and Strip - ASTM B 670, ASTM B 906, ASME SB 670, ASME SB 906, SAE AMS 5596, SAE AMS 5597, SAE AMS 5950, AECMA PrEN 2407, AECMA PrEN 2408, ISO 6208, DIN 17750

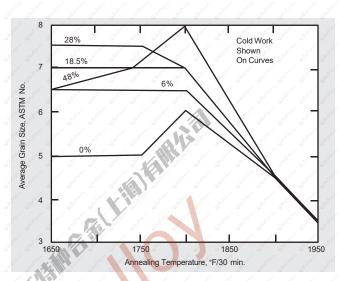


Figure 17. Effect of annealing temperature on grain size of sheet.

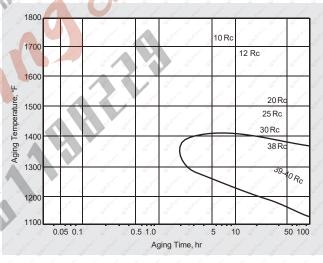


Figure 18. Effect of aging conditions on hardness of annealed sheet. (Initial hardness, as-annealed condition, Rc 4.

Pipe and Tube - SAE AMS 5589, SAE AMS 5590, ASME Code Case N-253, DIN 17751

Welding Product - INCONEL Filler Metal 718 - AWS 5.14 / ERNiFeCr-2

Others - ASME Code Case N-62, ASME Code Case N-208, DIN 17744